Modul 3






MODUL 3

HUKUM OHM, HUKUM KIRCHOFF, VOLTAGE & CURRENT DIVIDER, MESH, NODAL, THEVENIN

1. Pendahuluan[kembali]

    Hukum Ohm adalah arus listrik yang sebanding dengan tegangan dan berbanding terbalik dengan resistensi. Sedangkan menurut Kamus Collins, Hukum Ohm adalah prinsip arus listrik yang mengalir melalui suatu konduktor yang sebanding dengan beda potensial. Namun suhu tetap bernilai konstan. Konstanta proporsional merupakan resistansi dari konduktor. Persamaan Hukum Ohm dan rumus Hukum Ohm menggambarkan mengenai bagaimana arus mengalir melalui material apa saja saat tegangan diberikan. Satu hal yang perlu kamu ingat yaitu perbedaan antara resistensi rendah dan resistensi yang tinggi. Sebuah kabel listrik ataupun konduktor lain mempunyai resistensi rendah, hal tersebut berarti bahwa arus akan mengalir dengan mudah. Sebaliknya, apabila resistensi tinggi, maka arus akan sulit untuk mengalir.

    Secara sederhana, hukum Kirchoff 1 dan 2 adalah dua persamaan yang melibatkan arus dan tegangan dalam suatu rangkaian listrik. Hukum Kirchoff pada dasarnya membahas tentang konduksi listrik yang berkaitan dengan hukum konservasi energi. Dengan begitu, hukum Kirchoff sangat penting dipelajari sebagai dasar untuk memahami arus dan tegangan dalam rangkaian listrik, terutama rangkaian listrik tertutup. esuai bunyi Hukum Kirchoff 1, ketika arus listrik melewati percabangan, maka arus tersebut akan terbagi ke setiap cabang. Fungsi Hukum Kirchoff 1 adalah untuk menghitung besarnya arus yang terbagi tersebut. Pasalnya, besaran arusnya tergantung ada atau tidaknya hambatan di cabang tersebut. Jika hambatan besar maka berakibat pada arus listrik yang mengecil, begitupun sebaliknya. Sesuai bunyinya, Hukum Kirchoff 2 berlaku untuk rangkaian listrik tak bercabang dengan tujuan menganalisis tegangan atau beda potensial dalam suatu rangkaian tertutup. Dengan begitu, fungsi Hukum Kirchoff 2 adalah untuk membantu menyelesaikan permasalahan jika rangkaian yang didapati tidak sesederhana. Dengan kata lain, fungsi Hukum Kirchoff 2 adalah untuk menyederhanakan perhitungan arus pada rangkaian yang tidak bisa disederhanakan dengan kombinasi seri dan paralel.

    Rangkaian pembagi tegangan digunakan untuk menghasilkan level tegangan yang berbeda dari sumber tegangan yang sama. Meskipun arusnya tetap sama karena menggunakan rangkaian seri. Pembagi tegangan, atau sering disebut sebagai pembagi potensial, merupakan rangkaian pasif sederhana yang memanfaatkan efek tegangan yang dijatuhkan pada komponen yang dihubungkan secara seri. Aturan rangkaian seri menyatakan bahwa tegangan total sama dengan jumlah penurunan tegangan individu. Salah satu contoh paling dasar dari pembagi tegangan adalah potensiometer, yaitu resistor variabel dengan kontak geser. Dengan menerapkan tegangan pada terminalnya, kita dapat menghasilkan tegangan output sebanding dengan posisi mekanis kontak geser. Selain potensiometer, pembagi tegangan juga dapat dibuat menggunakan resistor biasa, kapasitor, dan induktor.

    Analisis mesh memberi kita metode yang berbeda untuk menganalisis rangkaian listrik menggunakan arus mesh atau arus loop sebagai variabel utama. Lebih mudah menggunakan arus mesh daripada arus yang mengalir melalui elemen-elemen dalam rangkaian karena kita akan memiliki lebih sedikit persamaan yang harus diselesaikan.

    Rangkaian analisis node saling melengkapi dengan rangkaian analisis mesh. Rangkaian analisis node menggunakan hukum Kirchhoff pertama, hukum Kirchhoff saat ini (KCL). Seperti yang kita sebutkan di atas, namanya menyiratkan bahwa kita menggunakan tegangan node dan menggunakannya bersama dengan KCL. Analisis node mengharuskan kita untuk menghitung tegangan node di setiap node sehubungan dengan tegangan ground (node referensi), maka kita menyebutnya metode node-voltage. Analisis node didasarkan pada aplikasi sistematis hukum Kirchhoff saat ini (KCL). Dengan teknik ini, kita akan dapat menganalisis rangkaian linier apa pun.

    Teorema Thevenin adalah salah satu konsep penting dalam ilmu elektronika yang memungkinkan kita untuk menyederhanakan rangkaian listrik yang kompleks menjadi yang lebih sederhana. Dalam artikel ini, kita akan membahas secara mendalam tentang teorema Thevenin, mulai dari pengertiannya hingga cara mengimplementasikannya dalam rangkaian listrik. Secara matematis, teorema Thevenin dapat dinyatakan sebagai berikut: Setiap rangkaian listrik yang terdiri dari sumber tegangan independen, resistor, dan elemen pasif lainnya dapat disederhanakan menjadi sebuah rangkaian Thevenin yang terdiri dari sebuah sumber tegangan Thevenin dan sebuah resistor Thevenin.


2. Tujuan [kembali]

  1. Dapat memahami prinsip Hukum Ohm.
  2. Dapat memahami prinsip Hukum Kirchoff.
  3. Dapat memahami cara kerja voltage dan current divider.
  4. Dapat membuktikan perhitungan arus dengan menggunakan Teorema Mesh.
  5. Dapat membuktikan perhitungan tegangan dengan menggunakan Analisis Nodal.
  6. Dapat menentukan tegangan ekivalen Thevenin dan resistansi Thevenin dari rangkaian DC dengan satu sumber.

3. Alat dan Bahan [kembali]

  • Module 

  • DC Power Supply

  • Multimeter

  • Voltmeter (Model 2011)

  • Amperemeter (Model 2011)

  • Jumper

4. Dasar Teori [kembali]

    1. Hukum Ohm

        “Kuat arus yang mengalir dalam suatu penghantar atau hambatan besarnya sebanding dengan beda potensial atau tegangan antara ujung-ujung penghantar tersebut. Pernyataan itu bisa dituliskan sebagai berikut yaitu I ∞ V.” Hukum Ohm dirumuskan oleh fisikawan Jerman Georg Simon Ohm pada tahun 1827 dan dinyatakan dalam persamaan matematis sederhana:

V = I⋅R

V = tegangan dalam volt (V),
I = arus dalam ampere (A), dan
R = resistansi dalam ohm (Ω).

Hukum Ohm menyatakan bahwa tegangan pada suatu komponen dalam suatu rangkaian sebanding dengan arus yang mengalir melaluinya, dengan resistansi sebagai faktor proporsionalitasnya. Artinya, jika resistansi tetap, maka arus dan tegangan akan memiliki hubungan linier. Jika resistansi meningkat, arus akan menurun untuk mempertahankan proporsionalitas dengan tegangan.

    2. Hukum Kirchoff

        Hukum I Kirchoff:

        "Jumlah kuat arus listrik yang masuk ke suatu titik cabang akan sama dengan jumlah kuat arus listrik yang meninggalkan titik itu." Hukum I Kirchhoff biasa disebut Hukum Arus Kirchhoff atau Kirchhoff’s Current Law (KCL).


Gambar 3.1 Hukum Kirchoff

Berdasarkan gambar di atas, besar kuat arus total yang melewati titik percabangan a secara matematis dinyatakan
Σ Imasuk = Σ Ikeluar

yang besarnya adalah

I1 = I2 + I3.

        Hukum II Kirchoff:

        "Jumlah aljabar beda potensial (tegangan) pada suatu rangkaian tertutup adalah sama dengan nol."

Hukum II Kirchhoff biasa disebut Hukum Tegangan Kirchhoff atau Kirchhoff’s Voltage Law (KVL).


Gambar 3.2 KVL

Berdasarkan gambar di atas, total tegangan pada rangkaian adalah Vab + Vbc + Vcd + Vda = 0. Hukum II Kirchhoff ini menjelaskan bahwa jumlah penurunan beda potensial sama dengan nol artinya tidak ada energi listrik yang hilang dalam rangkaian atau semua energi listrik diserap dan digunakan.

    3. Voltage & Current Divider

        a. Rangkaian pembagi tegangan

            Rangkaian pembagi tegangan adalah suatu rangkaian listrik yang dirancang untuk membagi tegangan input menjadi tegangan yang lebih kecil pada beberapa resistor yang terhubung secara seri atau paralel. Prinsip kerja dari rangkaian pembagi tegangan dapat dijelaskan dengan menggunakan hukum Ohm dan aturan pembagian tegangan Kirchhoff.

Prinsip Kerja Rangkaian Pembagi Tegangan:

  • Resistansi Total (Rtotal): Rangkaian pembagi tegangan terdiri dari dua atau lebih resistor yang terhubung. Resistansi total dari rangkaian dapat dihitung dengan menggabungkan resistansi-resistansi tersebut sesuai dengan koneksi (seri atau paralel).

  • Hukum Ohm: Hukum Ohm menyatakan bahwa arus dalam rangkaian sebanding dengan tegangan dan invers sebanding dengan resistansi. Dalam rangkaian pembagi tegangan, hukum Ohm digunakan untuk menghitung arus pada rangkaian.

I = Vin/Rtotal
  • Aturan Pembagian Tegangan Kirchhoff: Aturan ini menyatakan bahwa dalam suatu simpul (node) dalam suatu rangkaian listrik,jumlah aliran arus menuju simpul tersebut sama dengan jumlah arus yang meninggalkan simpul tersebut. Dalam rangkaian pembagi tegangan, aturan ini diterapkan untuk simpul pada kedua ujung resistor pembagi.

Vin = V1 + V2 + ... + Vn

Dimana V1, V2, ..., Vn adalah tegangan pada masing- masing resistor.

  • Tegangan Keluaran (Vout): Tegangan keluaran pada titik tertentu diambil dari resistor tertentu dalam rangkaian. Tegangan pada setiap resistor dihitung dengan menggunakan aturan pembagian tegangan Kirchhoff.

Vout = Vin x (Rtarget/Rtotal)

Dimana Rtarget adalah resistansi resistor yang terhubung pada titik keluaran.

        b. Rangkaian pembagi arus

        Rangkaian pembagi arus menggunakan sifat rangkaian paralel, yaitu jumlah arus yang masuk sama dengan jumlah arus yang keluar dari titik percabangan. Rangkaian pembagi arus membagi arus total yang masuk ke dalam cabang-cabang rangkaian sesuai dengan perbandingan hambatan pada masing-
masing cabang. Rumus untuk menghitung arus pada cabang ke-n adalah:

In = I × R~n/Rtotal

Dimana In adalah arus pada cabang ke-n, I adalah arus total yang masuk, Rtotal adalah hambatan pengganti rangkaian paralel, dan R~n adalah hambatan pada cabang selain cabang ke-n.

    4. Teorema Mesh


    Metode arus Mesh merupakan prosedur langsung untuk menentukan arus pada setiap resistor dengan menggunakan persamaan simultan. Langkah pertamanya adalah membuat loop tertutup (disebut juga mesh) pada rangkaian. Loop tersebut tidak harus memiliki sumber tegangan, tetapi setiap sumber tegangan yang ada harus dimasukkan ke dalam loop. Loop haruslah meliputi seluruh resistor dan sumber tegangan. Dengan arus Mesh, dapat ditulis persamaan Kirchoff’s Voltage Law untuk setiap loop.

    5. Nodal

        Analisis node adalah metode untuk menganalisis rangkaian listrik dengan menggunakan hukum arus Kirchhoff (KCL), yaitu jumlah arus yang masuk dan keluar dari suatu titik percabangan sama dengan nol. Analisis node membutuhkan penentuan simpul referensi (ground), yang merupakan titik acuan untuk mengukur tegangan node di rangkaian. Tegangan node adalah perbedaan potensial antara suatu simpul dengan simpul referensi.

Analisis node menghasilkan persamaan tegangan node independen sebanyak n-1, di mana n adalah jumlah simpul termasuk simpul referensi. Persamaan-persamaan ini dapat diselesaikan dengan metode eliminasi, substitusi, atau matriks untuk mendapatkan nilai tegangan node di setiap simpul.

    6. Teorema Thevenin

    Teorema Thevenin merupakan salah satu metode penyelesaian rangkaian listrik kompleks menjadi rangkaian sederhana yang terdiri atas tegangan thevenin dan hambatan thevenin yang terhubung secara seri. Beberapa aturan dalam menetapkan Vth dan Rth, yaitu:
  1. Vth adalah tegangan yang terlihat melintasi terminal beban. Dimana pada rangkaian asli, beban resistansinya dilepas (open circuit). Jika dilakukan pengukuran, maka diletakkan multimeter pada titik open circuit tersebut.
  2. Rth adalah resistansi yang terlihat dari terminal pada saat beban dilepas (open circuit) dan sumber tegangan yang dihubung singkat (short circuit).

Komentar

Postingan populer dari blog ini

Modul 2

Sub Bab 2.9 Clampers

Tugas Besar : Garasi Otomatis